This open book provides an overview of the recent advances in representation learning theory, algorithms and applications for natural language processing (NLP). It is divided into three parts. Part I presents the representation learning techniques for multiple language entries, including words, phrases, sentences and documents. Part II then introduces the representation techniques for those objects that are closely related to NLP, including entity-based world knowledge, sememe-based linguistic knowledge, networks, and cross-modal entries. Lastly, Part III provides open resource tools for representation learning techniques, and discusses the remaining challenges and future research directions.The theories and algorithms of representation learning presented can also benefit other related domains such as machine learning, social network analysis, semantic Web, information retrieval, data mining and computational biology. This book is intended for advanced undergraduate and graduate students, post-doctoral fellows, researchers, lecturers, and industrial engineers, as well as anyone interested in representation learning and natural language processing.
This open book is licensed under a Creative Commons License (CC BY). You can download Representation Learning for Natural Language Processing ebook for free in PDF format (10.3 MB).
Tất cả sách điện tử, ebook trên website TimSach.VN đều có bản quyền thuộc về tác giả. Chúng tôi khuyến khích các bạn nếu có điều kiện, khả năng xin hãy mua sách giấy để ủng hộ Tác giả và Nhà xuất bản
Thông báo: Do số lượng bot download quá nhiều, gây ảnh hưởng tới người dùng thực sự cần sách. BQT quyết định yêu cầu đăng nhập để tải sách về.
Các bạn chỉ cần đăng nhập là tải được sách với tốc độ cao.